A Clinical Approach to Peripheral Neuropathy
Doug Hornberger PA-C, M.M.S., M.B.A.

Introduction & Goals
- Practical and succinct approach to the identification and treatment of clinical Peripheral Neuropathy
- Topics associated with Peripheral Neuropathy will be presented
 - Anatomy
 - History
 - Diagnostic workup
 - Treatment
 - Case Study
- Goal of presentation: Present a better understanding regarding Peripheral Neuropathy
Introduction

- Neuropathy definition - A functional disturbance or pathological change in the peripheral nervous system

- Prevalence of peripheral neuropathy is estimated to be between 2% and 8%

- More than 100 types of peripheral neuropathy have been identified

Anatomy
Anatomy

- The peripheral nerves include:
 - Cranial Nerves
 - (not the 2nd CN)
 - Spinal Nerve Roots
 - Dorsal Root Ganglia
 - Peripheral Nerve Trunks and their Terminal Branches
 - Peripheral Autonomic Nervous System
Classification

- Neuropathic disorders encompass
 - Disease of the neuron cell body (neuronopathy) and their peripheral processes (peripheral neuropathy)

- Neuronopathies
 - Anterior horn cell disorders
 - Motor neuron disease
 - Dorsal root ganglion disorders
 - Sensory neuronopathy (ganglionopathy)

- Peripheral Neuropathies
 - Axonopathies
 - Myelinopathies
Classification

- Mononeuropathies: Damage to only one nerve
 - Focal neuropathies include compressive neuropathies such as
 - Carpal tunnel syndrome
 - Ulnar neuropathy at the elbow
 - Peroneal neuropathy at the fibular head

- Mononeuritis multiplex: Damage of two or more isolated nerves in separate areas of the body
 - A multifocal neuropathy suggests a mononeuritis multiplex
 - Vasculitis
 - Diabetes

- Polyneuropathy: Damage to multiple nerves affecting all limbs.

Symptoms

- Motor Symptoms
 - Positive symptoms-Inappropriate spontaneous nerve activity
 - Cramps
 - Twitching
 - Myokymia (involuntary muscular movement on skin)

 - Negative symptoms-Reduced nerve activity
 - Weakness
 - Fatigue
 - Wasting

 - Positive symptoms may present earlier in the disease process

 - Weakness may not be appreciated until 50% to 80% of nerve fibers are lost
Symptoms

- Sensory Symptoms
 - Positive symptoms - Inappropriate spontaneous nerve activity
 - Burning or lancing pain
 - Buzzing and tingling paresthesia
 - Discomfort to sensory stimuli normally not painful (allodynia)
 - Increased sensitivity to painful stimuli (hyperalgesia)

- Negative motor symptoms - Reduced nerve activity
 - Hypoesthesia (reduced sense of touch or sensation)
 - Gait abnormalities
 - Difficulty determining hot from cold
 - Worsening balance

History

- HPI
 - What is the disease onset, location, duration & progression
 - Onset
 - Symmetrical or asymmetrical
 - Location
 - Involvement of arms, legs, trunk or cranial nerve region
 - Duration
 - Is it acute, subacute or chronic
 - Progression
 - Steadily progressive
 - Fluctuating
 - Stepwise
History

- Medical, Surgical & Family History
 - Endocrinopathies
 - Diabetes mellitus
 - Hypothyroidism
 - Renal insufficiency
 - Hepatic dysfunction
 - Connective tissue disorders
 - Cancer
 - Nutritional deficiency
 - Chemotherapy side effects
 - Paraneoplastic syndrome
 - Surgeries
 - Bariatric
 - Multiple orthopedic surgeries
 - Multiple “entrapped nerve” surgeries

History

- Social History
 - Occupation
 - Toxic exposure to solvents, glues, fertilizers, oils & lubricants
 - Sexual History
 - HIV
 - Hepatitis C
 - Recreational drug use
 - Vasculitis secondary to cocaine use
 - Excessive alcohol intake
 - Dietary habits
 - Strict vegan diet
 - Smoking
 - Paraneoplastic disease
 - Childhood history
 - Clumsiness or poor athletic performance may suggest hereditary cause
History

- Medications
 - HIV related medications & chemotherapy are most common cause of toxic neuropathy
 - Quinolones
 - Vitamin B6 greater than 50-100mg daily may induce neuropathy

Physical exam

- Orthostatic vital signs could identify dysautonomia
- Skin & mucous membrane
 - Vasculitic rash (purpura, livedo reticularis)
 - Hyperpigmentation (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes [POEMS])
 - Oral ulcers (Behcet disease, HIV)
 - Salivary gland swelling, dry eyes or mouth (Sarcoidosis, Sjogrens syndrome)
 - Extremity hair loss (hair follicle degeneration)
Physical exam

- Integumentary changes
 - Mee lines in nails (arsenic or thallium poisoning)
 - Alopecia (hypothyroidism, amyloidosis, thallium poisoning)
 - Curly hair (giant axonal neuropathy)
 - Distal calf hair loss (axonal polyneuropathy)
- Skeletal deformities
 - Hammer toes, pes cavus, kyphoscoliosis suggestive of inherited polyneuropathy
- Nerve enlargement
 - Demyelinating neuropathy
 - Neoplasia in neurofibromatosis
 - Leprosy

Physical exam

- Cranial nerve exam looking for
 - Anosmia (inability to perceive odor)
 - Refsum disease- autosomal recessive neurologic disease that results from the over-accumulation of phytanic acid in cells and tissues.
 - Vitamin B12 deficiency
 - Optic atrophy
 - Inherited neuropathies with central and peripheral demyelination
 - Anisocoria or impaired pupillary light reflexes
 - Parasympathetic dysautonomia
 - Impaired ocular motility
 - Botulism
 - Miller Fischer syndrome
 - Trigeminal sensory loss
 - Sjogren syndrome
 - Facial weakness
 - Guillian-Barre syndrome [GBS]
Physical exam

- Motor exam
 - Atrophy of intrinsic hand and foot muscles
 - Most neuropathies cause distal weakness causing intrinsic muscle atrophy, clawed feet and hammer toes
 - Weakness of flexion and extension of the small toes and great toe extension
 - Angle greater than 130 degrees between the shin and the unsupported foot suggests ankle dorsiflexion weakness
 - 2nd and 5th hand digit abductors are often effected first

Physical exam

- Sensory Examination
 - To test large fiber function
 - Vibration
 - Joint position
 - Light touch
 - To test small fiber function
 - Pinprick
 - Temperature
 - Light touch
 - To test large and small fiber function
 - Light touch
Physical exam- large fiber function

- Vibratory perception (Large Fiber)
 - 128-Hz tuning fork
 - Great toe, malleolus, tibial tuberosity, finger and wrist
 - The time interval until vibratory perception is lost is measured
 - Young adult should appreciate vibration at the great toe for a minimum of 15 seconds
 - Value may decline by 1 second per decade
 - Vibratory perception of less than 10 seconds for any age is abnormal

Physical exam- large fiber function

- Joint position testing
 - Less sensitive than vibratory for large fiber function
 - May only be impaired in severe cases
 - Joint position is tested in large toe and second finger at the distal interphalangeal joint
 - Hold digit at the lateral borders with movement excursion minimal.
 - Proximal joints are tested if distal impairment is present
Physical exam- large & small fiber function

- Light touch
 - Evaluates low thresholds mechanoreception
 - Detection of light touch or stroking represents a measure of low threshold sensory perception
 - Impairment to 10g microfilaments is associated with increased risk of unappreciated trauma

Physical exam- small fiber function

- Small fiber evaluation
 - Evaluate pain and temperature
 - Apply sharp stimuli without applying pressure
 - Difficulty distinguishing between sharp and dull stimulation
 - Loss of nociceptive fibers relative to low threshold mechanoreceptor fibers
Physical exam- large & small fiber function

- Testing large & small myelinated nerves
 - Light touch & pin testing
 - Establish an area of normal sensation for comparison
 - Compare proximal and distal locations
 - Face, arm and leg
 - Right and left side
- Initial screen may include
 - Test bilaterally at the
 - Forehead, cheek & chin
 - Lateral upper arm & palmar surface of digits 2 & 5
 - Lateral thigh and anteromedial and anterolateral gastrocnemius
 - Distal dorsum of great toe & lateral sole toward the plantar aspect
 - Temperature (small fiber function) can be assessed with tuning fork

Physical exam

- Reflex testing
 - Ankle hyporeflexia or areflexia
 - Common in large fiber neuropathy
 - Reserved in small fiber neuropathy
 - Reflexes may be preserved in mild to moderate large fiber neuropathy
 - Reflexes diminish with age
 - Absent ankle jerk at age 80 may be normal
Physical exam

- Gait examination
 - Can reveal subtle weakness not noted on manual muscle testing
 - Toe walking
 - Heel walking
 - Tandem walking
 - Squatting and hopping
 - Foot drop may result in steppage gait
 - Wide based gait or difficulty with tandem gait may highlight subtle sensory ataxia

Characterization of Neuropathy

- Tempo of onset and duration
 - Most neuropathies are chronic and progressive with insidious onset
 - Hyperacute lesions over 2 to 72 hours may suggest
 - Vasculitic lesions causing mononeuropathy multiplexes
 - Acute presentation and progression ≤ 1 month suggests
 - GBS
 - Vasculitis
 - Porphyria
 - Infectious etiology (diphtheria, Lymes disease)
 - Toxic drug exposure (arsenic, thallium, chemotherapeutic agents, dapsone)
 - Subacute onset of neuropathy ≤ 6 months can suggest
 - Toxic neuropathy
 - Nutritional deficiency
 - Malignancy
 - Paraneoplastic syndromes
 - Some metabolic abnormalities
Characterization of Neuropathy

- Tempo of onset and duration
 - Neuropathy with relapsing and remitting course suggest
 - Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)
 - Porphyria
 - Hereditary neuropathy with liability to pressure palsies (HNPP)
 - Toxic exposure
 - Vasculitis
 - In critical illness setting, development of weakness over days
 - Most likely related to critical illness myopathy
 - Can be caused by critical illness neuropathy

Characterization of Neuropathy

- Motor versus sensory
 - It is rare for neuropathies to be purely motor or sensory
 - Although most neuropathies are mixed they may predominately reflect dysfunction of one fiber type
 - During history taking sensory symptoms often overshadow motor symptoms
Characterization of Neuropathy

- Neuropathies with predominant motor involvement
 - GBS
 - CIDP
 - Multifocal motor neuropathy (MMN)
 - Porphyria
 - Diptheria
 - Lead intoxication
 - Botulism
 - Hereditary neuropathies
 - Toxic exposure to dapsone, amiodarone and vincristine

Characterization of Neuropathy

- Neuropathies with predominant sensory involvement
 - Diabetes mellitus
 - Vitamin B12 deficiency
 - HIV
 - Amyloidosis
 - Leprosy
 - Sarcoidosis
 - Sjogren syndrome
 - Uremia
 - Paraneoplastic syndromes
 - B6 intoxication
 - Hereditary neuropathies
Characterization of Neuropathy

• Autonomic Neuropathy
 - Autonomic dysfunction may be seen as a component of:
 - Generalized polyneuropathy
 - Small fiber neuropathy
 - Predominantly autonomic neuropathy.
 - Autonomic nerves outnumber somatic nerves however somatic neuropathy is greater than autonomic neuropathy
 - Common causes of predominant autonomic symptoms
 - Diabetes Mellitus
 - Amyloidosis
 - GBS

Characterization of Neuropathy

• Autonomic neuropathy
 - If autonomic neuropathy is acute or subacute consider
 - Autoimmune autonomic ganglionopathy
 - Paraneoplastic syndrome
 - GBS
 - Botulism
 - Toxic neuropathies
 - Acute porphyria
 - If chronic autonomic neuropathies consider
 - Diabetes Mellitus
 - Amyloidosis (familial and primary)
 - Inherited disease (Hereditary sensory and autonomic neuropathy [HSAN])
 - Fabry disease
 - Sjogren syndrome
 - Toxic and infectious neuropathy including HIV
Characterization of Neuropathy

- **Demyelinating neuropathy**
 - Demyelinating features include
 - Weakness without atrophy
 - Early involvement of proximal reflexes and myokymia
 - Distal reflex loss (ankle jerks) with proximal reflexes is common in length dependent neuropathy

- **Etiology of demyelinating neuropathy include**
 - Genetic (Charcot-Marie-Tooth [CMT] type 1) HNPP
 - Refsum disease Metachromatic leukodystrophy
 - GBS MMN
 - Paraproteinemia-related neuropathy Diptheria
 - Infectious neuropathy
 - HIV, Lymes, leprosy, hepatitis C, diptheria and toxin related neuropathies (n-hexane, amiodarone)
 - CIDP
 - CIDP may be associated with systemic disease including
 - Infections, inflammatory bowel disease, metabolic conditions, and connective tissue disorders

Characterization of Neuropathy

- **Axonopathies have a classic symmetric length dependent pattern of symptom evolution**
 - Sensory symptoms
 - Symptoms start in the feet which are supplied by the longest axons
 - After dyesthesias and numbness ascend to the calves the fingertips become effected
 - The legs, forearms and eventually anterior chest can become involved

- **Motor symptomatology first affects**
 - Intrinsic foot muscles causing toe flexor weakness and clawed toe
 - Anterior tibial compartment muscle weakness then causes ankle dorsiflexion weakness
 - Plantar flexion is relatively preserved.
 - The intrinsic hand muscles become involved only after calf muscles are involved
 - Motor weakness is usually greater in extensor groups than corresponding flexor groups

- **Many chronic axonopathies remain idiopathic**
Diagnostic testing in Peripheral Neuropathy

- AAN Guidelines for distal symmetric polyneuropathy
 - Fasting blood glucose
 - 2-hour glucose tolerance test is more sensitive than Hemoglobin A1c
 - Electrolytes
 - Complete blood count & differential
 - Vitamin B12
 - When value is below 400 pg/mL
 - Test methylmalonic acid and homocysteine
 - Erythrocyte Sedimentation Rate
 - Thyroid Stimulating Hormone
 - Serum immunfixation electrophoresis (IFE)
 - Serum IFE is more sensitive than Serum Protein electrophoresis (SPEP) in detecting monoclonal gammopathy
 - Quantitative Igs (IgG, IgA, IgM) may suggest lymphoproliferative disorders

- Test with the highest yield of abnormality are
 - Blood glucose
 - B12 with methylmalonic acid and Homocysteine
 - Serum immunfixation electrophoresis (IFE)

Diagnostic testing in Peripheral Neuropathy

If initial tests are not revealing test focusing on individual diseases should be considered

- Vasculitis and connective tissue disorders
 - C-reactive protein
 - Antinuclear antibody
 - Double stranded DNA
 - SS-A and SS-B
 - Rheumatoid factor
 - Proteinase 3
 - Myeloperoxidase complement
 - Angiotensin Converting enzyme (ACE)
 - Hepatitis B & C panels
 - Cryoglobulins

- Infectious Conditions
 - Lymes titer
 - Rapid Plasma Reagin
 - HIV
Diagnostic Testing in Peripheral Neuropathy

- Additional testing if a specific disease is suspected
 - Chest x-ray or CT to evaluate for Sarcoidosis
 - PET scan or CT of chest, abdomen and pelvis if malignancy is suspected
 - Skeletal survey and bone marrow biopsy if lymphoproliferative disease is suspected
 - Salivary gland biopsy for Sjogren syndrome
 - Endoscopy and duodenal biopsy for Celiac disease
 - Colonoscopy for Inflammatory Bowel Disease
 - Cerebral Spinal Fluid if infectious or neoplastic cause of neuropathy is suspected
 - HIV, Cytomegalovirus, Lyme disease, West Nile disease cause pleocytosis
 - Dysimmune neuropathy associated with elevated protein with normal cell counts
 - MRI can document
 - Nerve root enhancement in CIDP
 - Nerve root clumping in arachnoiditis
 - Nerve enlargement in tumors

Electrodiagnostic Testing in Peripheral Neuropathy

- Electrodiagnostic testing refers to nerve conduction studies (NCS) and needle electromyography (EMG)
- These test are standard for large fiber neuropathy BUT ARE OFTEN NORMAL IN SMALL FIBER NEUROPATHY
- Electrodiagnostic testing may help exclude mimics of polyneuropathy
 - Myopathy
 - Neuropathy
 - Plexopathy
 - Polyradiculopathy
- Electrodiagnostic testing augments ability to
 - Assess motor vs. sensory involvement
 - Severity of neuropathy
 - Distribution of neuropathic dysfunction
 - Relative extent of axonopathy versus myelopathy
 - May be repeated in time to assess progression of disease
Electrodiagnostic Testing in Peripheral Neuropathy

- **NCS**
 - Electrical stimulation and recording over a nerve or muscle using surface electrodes
 - The size and shape of the waveform are assessed.
 - Sensory nerves reveal Sensory Nerve Action Potentials (SNAP)
 - Muscle nerves reveal Compound Muscle Action Potentials (CMAP)
 - Parameters include
 - Latency
 - Amplitude
 - Conduction velocity (CV)
 - Duration
 - F wave studies reflect conduction over the entire length of the nerve
 - Tibial H reflex is the electrophysiologic equivalent of the S1 reflex and assess both sensory and nerve conduction

- **Needle EMG** assess electrical activity of the voluntary muscles
 - Helps localize the distribution or dysfunction based on the distribution and amplitude of fibrillations and sharp waves along with Motor Unit Potential (MUP) morphology
 - At rest, the presence of fibrillation and positive sharp waves indicate spontaneous discharge of individual muscle fibers
 - These findings suggest denervation of muscle fibers
 - Motor unit potential (MUP) may suggest
 - A neurologic lesion with reinnervation (increase duration, amplitude and polyphasia)
 - A myopathic lesion (brief duration, low amplitude, and polyphasia)
 - With activation of the muscle, the recruitment pattern may be divided into 2 components
 - Interference pattern
 - Firing rate
 - In neuropathy, there may be an increased firing frequency in association with decreased interference pattern
 - In myopathy, there may be an early recruitment of MUPs with a low amplitude envelope of the interference pattern
Diagnostic Testing in Peripheral Neuropathy

- Skin biopsy
 - Skin biopsy is becoming the standard for assessment of unmyelinated cutaneous nerves
 - Intraepidermal small nerve fibers convey pain and temperature sensation from the skin and maintain autonomic function
 - Skin sampling is done by either skin punch or less commonly skin blister technique

Diagnostic Testing in Peripheral Neuropathy

- Nerve biopsy
 - Nerve biopsy has become less important because of progress in electrodiagnostic, laboratory and genetic testing

- Neurophysiologic testing
 - Magnetic stimulation may assess conduction in proximal segments such as the femoral nerve or cauda equina
 - In general has limited use in peripheral neuropathy
 - Somatosensory-evoked potentials (SSEPs) may localize sensory symptoms to the nerve/plexus/root and evaluate proximal nerve segments that are inadequately assessed by NCS
Diagnostic Testing in Peripheral neuropathy

- Quantitative Sensory testing
 - Administration of vibration, warm, cold, and heat to great toe or index finger to determine the threshold to the sensation

- Autonomic testing
 - Sympathetic and parasympathetic function are assessed using the following indices
 - Cardiovagal
 - Adrenergic
 - Sudomotor
 - Sympathetic sudomotor testing include
 - Sympathetic skin response (SSR)
 - Quantitative sudomotor axon reflex testing (QSART)
 - Thermoregulatory sweat testing (TST)

Diagnostic Testing in Peripheral Neuropathy

- Cardiovascular testing
 - In normal physiology the heart rate increases with inspiration and decreases with expiration
 - Heart rate variability assessment during deep breathing (HRDB)
 - Assess variability in successive R-R intervals at six breaths/minute
 - Variation is largely related to parasympathetic/vagal nerve pathways and is reduced in autonomic dysfunction
 - Valsalva maneuver assess cardiovascular and sympathetic vasomotor function

- Tilt table testing
 - Orthostatic hypotension associated with neuropathy occurs when small myelinated and unmyelinated baroreflex fibers in splanchnic vasculature are damaged
Diagnostic Testing in Peripheral Neuropathy

- DESPITE AN EXTENSIVE SEARCH FOR ETIOLOGY OF NEUROPATHY THE CAUSE REMAINS IDIOPATHIC IN A SUBSTANTIAL NUMBER OF PATIENTS, MOST COMMONLY IN ELDERLY PATIENTS WITH MILD DISEASE

Treatment of Neuropathic Pain

- Neuropathic pain may arise from a lesion or disease affecting the somatosensory system
- Examples of neuropathic pain include
 - Diabetic polyneuropathies
 - Postherpetic neuralgia
 - Trigeminal neuralgia
 - Central poststroke
 - Spinal cord injury
Treatment of Neuropathic Pain

- Patients with neuropathic pain generally exhibit
 - Spontaneous (stimulus-independent)
 - Continuous (foot pain in diabetic neuropathy)
 - Intermittent (pain paroxysms in trigeminal neuralgia)
 - Pain described as
 - Cold
 - Burning
 - Sharp
 - Squeezing
 - Shooting
 - Stabbing
 - Electric "shock-like"
 - Evoked (stimulus dependent)
 - Hyperalgesia or allodynia
 - Defined with reference to the evoking stimulus
 - May be provoked by
 - Brush
 - Pressure
 - Cold
 - Heat

Mechanisms of Neuropathic Pain

- Peripheral mechanisms
 - In animal models, abnormal neuronal activity has been noted in primary afferents and in the dorsal root ganglion
 - Mainly related to dysregulation of the synthesis or functioning of sodium channels
 - Potassium channels may be involved
 - Nerve injury induces up regulation of several receptor proteins including Transient Receptor Potential Vanilloid 1 (TRPV1)
 - TRPV1 is located on subtypes or peripheral nociceptive endings and is physiologically activated by noxious heat among other stimuli
 - After a nerve lesion TRPV1 is up regulated in uninjured nerve fibers which may induce heat hyperalgesia
Mechanisms of Neuropathic Pain

- Central mechanisms
 - Peripheral nerve lesions can induce central changes
 - Investigated in animals at the spinal cord and supraspinal levels
 - Modifications that can activate central noiceptive neurons
 - Modification of the modulatory controls of the transmission of noiceptive neurons
 - Anatomic reorganization (neuroplasticity) of the central noiceptive neurons
 - Microglial activation
 - Central sensitization (hyperexcitibility) of noiceptive neurons
 - Central sensitization probably depends on intracellular changes induced by the activation of NMDA receptors or other receptors by excitatory amino acids released by primary afferents.
 - It is unlikely that neuropathic pain is related to only one mechanism.
 - Each of the painful symptoms may correspond to distinct mechanisms and therefore respond to different treatments

Neuropathic Pain Treatments

![Image of Neuropathic Pain Treatments table]

TABLE 8-1 Summary of Evidence-Based Recommendations For Treatment of Peripheral Neuropathic Pain

<table>
<thead>
<tr>
<th>Drug</th>
<th>Main Mechanism of Action</th>
<th>Common Major Side Effects</th>
<th>Prescriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranquilizers</td>
<td>Modulation of peripheral noiceptive transmission</td>
<td>Sedation, dizziness, somnolence</td>
<td>Benzodiazepines (e.g., clonazepam)</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>Modulation of central noiceptive transmission</td>
<td>Sedation, nausea, constipation</td>
<td>Tricyclic antidepressants (e.g., amitriptyline)</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>Modulation of central noiceptive transmission</td>
<td>Sedation, dizziness, ataxia</td>
<td>Carbamazepine, gabapentin</td>
</tr>
<tr>
<td>NMDA receptor antagonists</td>
<td>Modulation of central noiceptive transmission</td>
<td>Sedation, dizziness, ataxia</td>
<td>Ketamine, memantine</td>
</tr>
</tbody>
</table>

- Recommendations grading: A = good scientific evidence from placebo-controlled trials, B = some scientific evidence from Case-Control studies
- Table modified from Attal, N. et al.: Neuropathic Pain: Mechanisms, Therapeutic Approach and Interpretation of Clinical Trials. CONTINUUM: Lifelong Learning in Neurology. 18(1, Peripheral Neuropathy): 161-175, February 2012.
Neuropathic Pain Treatments

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
<th>Other Benefits</th>
<th>Efficiency</th>
<th>Level of Evidence</th>
<th>Starting Dose</th>
<th>Titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants</td>
<td>Nortriptyline, Desipramine, Amitriptyline</td>
<td>Decrease depression</td>
<td>3-4</td>
<td>2</td>
<td>10 mg at bedtime; titrate up by 10 mg for 1-7 days.</td>
<td></td>
</tr>
<tr>
<td>SNRI</td>
<td>Duloxetine, Venlafaxine</td>
<td>Decrease depression</td>
<td>3-4</td>
<td>2</td>
<td>Start at 50 mg daily, titrate up by 50 mg/day until efficacy, not to exceed 300 mg daily.</td>
<td></td>
</tr>
<tr>
<td>Calcium channel alpha 2 delta ligands</td>
<td>Gabapentin, Pregabalin</td>
<td>Decrease pain and improve sleep</td>
<td>3-4</td>
<td>2</td>
<td>300 mg twice daily, can be titrated up to 3,600 mg/day.</td>
<td></td>
</tr>
<tr>
<td>Topical lidocaine, 5% lidocaine patches</td>
<td>Capsaicin patches</td>
<td>Analgesic effect</td>
<td>3-4</td>
<td>2</td>
<td>1-2 patches applied every 12 hours.</td>
<td></td>
</tr>
<tr>
<td>Opioid agonist</td>
<td>Tramadol, Methadone, Levorphanol</td>
<td>Analgesic effect</td>
<td>3-4</td>
<td>2</td>
<td>50 mg orally or rectally every 6 hours.</td>
<td></td>
</tr>
</tbody>
</table>

Case Study

- 60-year-old man with a history of type 2 diabetes mellitus referred to the neurology clinic for pain in his feet.
 - The patient was diagnosed with type 2 diabetes mellitus approximately 12 years ago.
 - Since that time he had adhered to his prescribed medication regimens but not to his diabetic diet.
 - Hemoglobin A1c level between 8% and 9%.
- About 5 years ago he started noticing
 - Pains in all of his toes
 - Numbness in his feet with some gait imbalance when walking on uneven surfaces
 - Since that time, the numbness had slowly migrated up to the middle of his shins
 - Pain has progressed and become quite bothersome
 - He reports it feels like walking on broken glass
 - He describes burning in his feet when lying down at night
 - The stabbing pains continued in his toes and has occurred in his shins
- Pain is considered to be 8 out of 10
- Past Medical History significant for hypertension, type 2 diabetes mellitus, and hypercholesterolemia
- Medications included lisinopril, metformin, and long-acting insulin
- He has No Known Drug Allergies
- He does not smoke, drink alcohol, or use illicit substances
- He worked as a computer programmer
- Strong family history of diabetes mellitus but no history of peripheral neuropathy or other neurologic diseases
- A complete 14-topic review of systems was obtained and was positive for erectile dysfunction and a 15 lb weight gain

Case Study

- **Physical Examination**
 - Well-developed and well-nourished obese man in no acute distress
 - BP 110/70 mm Hg, P 75 beats/min, and RR 12 breaths/min
 - No bruits of the neck. Heart, Chest GI normal. Dorsalis pedis pulses good.
 - AAOx 3. Cranial nerve testing was normal
 - Motor strength was 5/5 throughout with the exception of
 - 4/5 toe dorsiflexion and toe plantar flexion
 - Tone was normal in the arms and legs
 - Extensor digitorum brevis atrophy was present in the feet.
- **Sensory Testing**
 - Pinprick and temperature perception was decreased below the knees bilaterally
 - Absent vibratory perception and mildly reduced proprioception in the toes
 - Reflexes were 1/4 in the arms, 1/4 at the knees, and absent at the ankles. Plantar responses were flexor bilaterally.
 - Coordination was normal on finger-nose-finger and heel-knee-shin testing bilaterally.
 - His gait was slightly wide-based but steady. He had difficulty with tandem walking

Case Study

- What does patient likely have?
- What test would you complete?
- Would you consider medication and if so which one?
Case Study

- The neurologist discussed with the patient that he had evidence of peripheral neuropathy more specifically sensorimotor peripheral neuropathy often seen in patients with diabetes mellitus.
- Labs: vitamin B₁₂, methylmalonic acid, thyroid-stimulating hormone, and serum protein electrophoresis
- The patient was also referred for nerve conduction studies and EMG to better characterize and grade the severity of his peripheral neuropathy.
- The patient was encouraged to strive for better glycemic control to prevent further complications related to diabetes mellitus.
- The patient was instructed to start pregabalin at 50 mg 3 times a day and then titrate this upward over the course of 2 weeks to a goal dose of 100 mg 3 times a day.
- Discussed common side effects, including dizziness and somnolence
- Visit concluded with a discussion of the importance of good foot hygiene to prevent complications such as diabetic foot ulcers.

Case Study

- 3 month follow-up
 - Patient felt he was doing well
 - He had been adhering to his diabetic diet and medication regimen
 - He had started to exercise and lost 10 lbs
 - His most recent hemoglobin A₁c was 6.8%.
 - Pregabalin had reduced pain level to 2 out of 10
 - He continued with 5/10 pain at bedtime causing sleep issues
 - He was not experiencing any side effects from the pregabalin
 - NCS/EMG consistent with sensorimotor axonal polyneuropathy
 - His laboratory workup was unremarkable.
 - Discussion regarding alternative treatment to help his pain
 - The patient was advised to stop pregabalin
 - He was prescribed amitriptyline 10 mg at bedtime, to be increased to 30 mg at bedtime over the next few weeks
Case Study

- 6 month followup (3 months later from 2nd appointment)
- Patient was still adhering to his diabetic diet and medication regimen
- He was continuing to exercise with most recent hemoglobin A1c of 6.4%.
- Amitriptyline had helped his pain symptoms dramatically
 - His new level of pain was 1 out of 10
 - He was no longer having difficulty with sleep
 - He was not having any medication side effects.
- The patient was content with the current level of pain control and did not want to take any more medicine.
- The patient elected to follow up as needed and was encouraged to call with any problems.

Thank You

Doug Hornberger PA-C, M.M.S., M.B.A.
Bibliography

- Information from this talk comes from the following sources
 - Peripheral Neuropathy: Victor F. Politi, MD, Medical Director, St. Anthony’s School of Allied Health Professions, Physician Assistant Program
 - http://pharmacology-notes-free.blogspot.com